When having a baby can kill you

Slide10

Pregnancy is usually a happy time with the outcome being a healthy baby. However, some complications in pregnancy can be serious. Over the years I have cared for many couples with molar pregnancy (technically known as gestational trophoblast disease). This terrible complication of pregnancy not only results in grief from the “lost baby”, but can also have lasting physical, social and psychological consequences for both the mother and father (1,2,3,4). Untreated, molar pregnancy can cause death of the mother (1,2).

Of note, our research into molar pregnancy revealed that many fathers experienced lasting social and psychological symptoms following molar pregnancy (4). One reason for this is due to the origins of the disease.

Origins of molar pregnancy

There are two types of molar pregnancy, a complete mole and a partial mole. In both cases, the male sperm plays a key role.

In a complete molar pregnancy, sperm (one or two) fertilize an egg that has lost its female genetic material (DNA). Therefore all the genetic material in the fertilized egg arises from the male and none from the female.

In a partial molar pregnancy, a single egg is fertilized by two sperm causing an excess of male genetic material within the fertilised egg.

The incidence of molar pregnancy varies around the globe, from 1 in 200 to 1 in 2000 pregnancies (1,2).

Impact on pregnancy

Sadly, molar pregnancy never results in a normal baby except for the extraordinarily rare cases of twinning where one twin is a molar pregnancy and the other a normal pregnancy. Instead, the usual situation is that the uterus becomes full of abnormal placental tissue and no baby is present (complete mole) or some fetal development occurs, but the fetus  is  malformed and not viable (partial mole).

The abnormal placental tissue causes bleeding and can metastasis around to body to other organs such as the lungs, in the same way an untreated cancer may spread around the body.

Impact on women

Most molar pregnancies present with abnormal vaginal bleeding between 8 and 16 weeks of pregnancy. Initially most women are concerned about miscarriage.

The diagnosis may be strongly suspected following an ultrasound, where a characteristic pattern called a “snowstorm” may be seen within the uterus. However, the condition is not definitively diagnosed until a sample of the tissue within the uterus is sent for analysis (histopathology) and tissue that looks like a cluster of grapes (abnormal chorionic villi) are seen under the microscope.

Some women may present with signs of thyroid disease, as the abnormal placental tissue can produce thyroid-like hormones. Women may also present with excessive nausea and vomiting of pregnancy (hyperemesis) and rarely may present with abnormally high blood pressure readings under 20 weeks of pregnancy.

Management of molar pregnancy

Once a molar pregnancy is confirmed, management involves surgery, follow up surveillance and possibly chemotherapy.

The initial management is uterine suction curettage. This surgical procedure is necessary to confirm the diagnosis and exclude an even rarer form of gestational trophoblastic disease called choriocarcinoma. The surgery carries more risk than a usual suction curettage, as the abnormal placental tissue is very vascular, and therefore the risk of heavy bleeding is higher. This means that the attending gynaecologist will often cross match blood and organise an anaesthetic consultation to plan the safest time to perform surgery. Medication may be required following surgery to help contract the uterus and reduce post operative bleeding.

Following surgery, women receive a “risk rating” that is determined on a number of factors such as their levels of pregnancy hormone, blood group, the presence of metastatic disease and the histopathology of the molar pregnancy.

Based on the “risk rating” results, women enter a follow up surveillance program that involves monitoring with serial blood or urine pregnancy hormone levels.

If a women had a high initial risk score, or her pregnancy hormone levels rose or failed to fall during her surveillance period, then she will require chemotherapy. This is usually Methotrexate, but in some case will be combined chemotherapy.

The impact of molar pregnancy on women is often profound. This is particularly true as the risk of molar pregnancy increases as women become older. Some women may have been trying to conceive for many years and then discover their pregnancy is a molar pregnancy. Not only do they not have the baby they desire, they face surgery, prolonged surveillance during which pregnancy is contraindicated, and possible chemotherapy. They must defer trying to have a child until they have been cleared (3,4).

Impact on partners

Partners of affected women can also suffer due to delayed childbearing, prolonged stress and a feeling of guilt related to the male role in the origins of molar pregnancy (4,5,6).

In our research, we contacted 158 former patients in our service with molar pregnancy and through these women, interviewed  41 partners. We found many partners were as emotionally fragile as the woman. For full results click here.

In a thematic analysis we found several themes related to anxiety and fear, sadness and depression, and guilt.

Anxiety

Anxiety was the dominant theme, rather than depression. Anxiety arose in male partners from a sense of frustration consequent to experiencing loss of control over their fertility, particularly their anxiety that they, as a couple, may never have a child.

‘Wouldn’t have occurred to us before when we were just worried about possible health of a baby’

‘Words cannot describe how emotionally stressful it was… I witnessed my partner being torn apart emotionally.’

‘Almost given up hope/plans of having a child at our age (maybe still some fear that another pregnancycould go awry).’

‘My world came crashing down.’

Guilt and blame

Partners felt guilty or blamed themselves for the occurrence of the molar pregnancy. Factors such as the male contribution in conception and individual genetic structures impacted on male participant’s view of cause and effect.

‘I somehow feel responsible in a way that it may have been my fault that it had something to do with my (works) my body that wasn’t right that caused this unusual pregnancy.’

Medical care

Themes relating to medical care centred around the actual treatment of molar pregnancy and the constant reminder of the diagnosis during the prolonged follow up perios that meant couples relived the experience. This delayed emotional recovery. The lack of clear information added to confusion and uncertainty.

‘…we are constantly reminded of our ‘failure’ through monthly urine samples, etc.’

‘I didn’t know as a individual at the time what was going on with my partner because we didn’t have enough information.’

Male partners’ displacement of feelings

Male partners felt a sense of indirect involvement in the management of the molar pregnancy. A new unfamiliar distancing occurred in a small percentage of couple relationships because of withdrawal from communication with partners during this time. This left partners feeling hopeless, unable to initiate appropriate actions to help their partner cope with trauma resulting from the diagnosis.

Partners felt they had to manage other financial and social matters additionally during this period of time. The male partner viewed himself largely as a supporter and made a distinction from being the patient.

‘I still cannot imagine what it would be like for my partner as she was the one carrying the pregnancy.’

‘It is hard for the husband to feel the same sense of loss as the wife because he has not had any physical contact with the “baby”.’

‘I felt very detached from it because it wasn’t my body going through the miscarry.’

Sexual function

Some men reported disparity in sexual functioning with their partner and described sexual tensions in their relationship.

‘My partner seems a little numb now, compared with before, and that makes it harder to feel good about sex and being close. I’m still keen but she seems less so…’

‘With all this happening inside her, she now seems less interested in sex, maybe that’s normal, but when I try she looks almost scared.’

‘…reduced desire by wife/apprehension re. sexual, even sensual contact…’

Positive role of children

The protective effect of children came through in our research. Subsequent delivery of a healthy child overcame the sense of loss.  This was reported both as an actual experience and as a hypothetically positive experience.

‘The scars only really started healing once we were given the gift of a beautiful baby boy nearly 2 years later.’

Summary

Most of the time pregnancy is a happy event, but occasionally things go wrong. It is important to remember that both mother and father may be deeply impacted and to provide support and follow up when things don’t go to plan.

Ultimately, providing support to ensure the couple are able to help each other through a sad and frightening experience is as important as getting the actual medicine right.

 References

  1. Berkowitz RS, Goldstein DP. Gestational trophoblastic diseases. In Principles and Practice of Gynecologic Oncology, Hoskins WJ, Perez CA, Young RC (eds.), Lippincott Williams & Wilkins: Philadelphia, PA, 2000; pp 1117–1137.
  2. Feltman CM, Growden WB, Wolfberg AJ et al. Clinical characteristics of persistent gestational trophoblastic disease after partial hydatidiform molar pregnancy. J Reprod Med 2006;51:902–906.
  3. Berkowitz RS, Marean AR, Hamilton N et al. Psychological and social impact of gestational trophoblastic neoplasia. J Reprod Med 1980;25:14–16.
  4. Quinlivan JA, Ung KA, Petersen RW. The impact of molar pregnancy on the male partner.Psychooncology. 2012 Sep;21(9):970-6. doi: 10.1002/pon.1992. Epub 2011 May 24.
  5. Wenzel L, Berkowitz RS, Robinson S, Bernstein M, Goldstein D. The psychological, social, and sexual consequences of gestational trophoblastic disease. Gynecol Oncol 1992;46:74–81.
  6. Wenzel L, Berkowitz RS, Robinson S, Goldstein DP, Bernstein MR. Psychological, social and sexual effects of gestational trophoblastic disease on patients and their partners. J Reprod Med 1994;39(3):163–167.

Pokemon Go, exercise and gestational diabetes mellitus

IMG_0675

The recent Pokemon Go craze could have an unintentional benefit for women with pregnancy complicated by Gestational Diabetes Mellitus (GDM). The exercise involved in walking  around parks trying to capture Pokemon helps manage blood sugar levels and can lead to a reduced need for medication and diabetic complications.

The benefits of exercise in pregnancy

Regular exercise, particularly walking, is beneficial in pregnancy. Not only can regular exercise limit excessive gestational weight gain to international standards, it can also help prevent or manage GDM (1,2).

However, encouraging women to participate in regular exercise during pregnancy has proven challenging (3). Several randomised trials of exercise interventions in pregnancy have failed to demonstrate an effect on preventing excessive gestational weight gain or on the incidence or management of GDM, mainly due to poor compliance and low levels of participation by pregnant women in exercise programs (3,4,5).

So how might Pokemon Go help?

Women diagnosed with GDM are often asked to monitor their blood sugar level each morning (fasting blood sugar level) and again  2 hours after every meal (post prandial 2 hour blood sugar level). If the morning fasting blood sugar level, or the post prandial 2 hour blood sugar levels are higher than recommended targets (2,5), then medication may be necessary in order to reduce the risk of pregnancy complications such as abnormal fetal growth (macrosomia), excessive amniotic fluid (polyhydramnios), placental damage or fetal death in utero.

Regular exercise, even a 30 minute walk performed three times a week, can be helpful in regulating gestational weight gain and blood sugar levels.

This is where Pokemon Go might help.

By combining a regular walk with a game, it might encourage pregnant women to walk.

Maybe the manufacturers could invent pregnant Pokemon for our pregnant women to capture and provide an extra incentive!

Over to you game makers.

What else is new in gestational diabetes research?

Our research team recently published a paper on managing gestational diabetes (6). In this research study we explored whether it was possible to safely streamline the number of women who have to undergo antenatal investigations.

The particular focus of our recent study was on the value of fetal cardiotocography (CTGs) in managing GDM (6).

Different levels of risk in GDM?

The prevalence of GDM is rising due to increases in maternal obesity and a rise in sedentary lifestyles (6,7,8). If increasing numbers of pregnant women need increasing numbers of tests, our maternity systems will explode and costs of care will rise.

GDM pregnancies do have an increased risk of maternal and fetal complications such as gestational hypertension, pre-eclampsia, caesarean delivery, development of type 2 diabetes postpartum, fetal macrosomia, birth trauma and shoulder dystocia (6,7,8). The risk of maternal and fetal complications is particularly high in GDM pregnancies with poor blood sugar control (6,7,8).

Medications that reduce blood sugar levels in women with GDM include Insulin and Metformin. Medication is only prescribed when women cannot achieve ideal blood fasting and 2-hour post prandial blood sugar levels despite eating a diabetic diet and undertaking regular exercise.

Women who need medication to manage their blood sugar level are therefore  at higher risk of potential pregnancy complications compared to women who are able to manage their blood sugar levels with  diet and exercise.

Fortunately, 70% of women can manage their blood sugar levels with diet and exercise. This means only 30% of women diagnosed with GDM require medication.

Antenatal monitoring in GDM

Antenatal fetal monitoring is routinely performed in pregnancies complicated by GDM.

The two most common tests undertaken to monitor the wellbeing of the fetus are cardiotocographs (CTG) and ultrasound (9,10).

CTG can detect some pregnancies at risk of stillbirth, allowing for prompt further intervention (9,10).

How do CTGs work?

The heart rate of a fetus is determined by a balance between two different types of neurotransmitters (sympathetic and parasympathetic) that  act on the sinoatrial node in the heart (11).

This balance is mediated through a number of factors including catecholamines (11). If fetal pathology is present, and the fetus is unwell, this balance can be affected, and changes in fetal heart rate patterns can be observed on a heart rate trace – the CTG (11,12). 

A number of conditions are associated with abnormal CTG tracings. Specific CTG findings that suggest fetal hypoxia and acidosis include reduced variation in the baseline fetal heart rate and loss of rises in heart rate (accelerations) or development of drops in fetal heart rate after uterine contractions (late decelerations) (13).

Using CTGs in pregnancy complicated with GDM

As high levels of blood sugar can damage the placenta and lead to fetal pathology that makes the fetus at risk of low oxygen or death, CTGs have been used to monitor GDM pregnancies.

However, there is a lack of consensus on the frequency and commencement gestation of CTG monitoring in GDM pregnancies (14,15,16).

Results from our research

In our recent research publication, published in the Australian and New Zealand Journal of Obstetrics and Gynaecology, we evaluated the role of CTGs in managing pregnancy complicated by GDM (6). Click here to read to full paper.

We audited 1404 consecutive antenatal CTGs in women diagnosed with GDM to determine how often they resulted in a change in management.

Overall, we found that in women requiring medication in order to manage their blood sugar levels, 43 CTGs were required to change management.

In women who did not require medication to manage their blood sugar levels, but who had another factor complicating their pregnancy, 161 CTGs were required to change management.

However, in women who did not require medication to manage their blood sugar levels and who had no other pregnancy complication, CTGs did not change management.

Therefore, if pregnant women with GDM can achieve good blood sugar control with changes to their diet and exercise, they do not require CTG monitoring.

This further emphasises the need to promote a diabetic diet and regular exercise in women with GDM.

If Pokemon Go is a potential solution to help encourage pregnant women walk and exercise on a regular basis, then it might result in a cost saving to our health system through improved pregnancy outcomes, less need for prescribed medication in GDM pregnancy and less need for antenatal monitoring with CTGs.

Maybe we should run a trial?

References

  1. Quinlivan J. The Challenge to deliver cost effective care for patients with Gestational Diabetes Mellitus. Repro Syst Sexual Dis 2014; 2014(3):4. DOI: 10.4172/2161-038X.1000144
  2. International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in pregnancy. Diabetes Care 2010;33:676-682.
  3. Quinlivan J Dietary component of lifestyle interventions helps obese pregnant women. Evidence Based Medicine 06/2012; 18:e4 doi:10.1136/eb-2012-100794.
  4. Quinlivan J, Juliania S, Lam L. Antenatal dietary interventions in obese pregnant women to restrict gestational weight gain to institute of medicine recommendations: a meta-analysis. Obstetrics and Gynecology 2011: 118(6): 1395-401.
  5. Nankervis A, McIntyre HD, Moses R, Ross GP, Callaway L, Porter C, et al. Consensus guidelines for the testing and diagnosis of gestational diabetes mellitus in Australia. Australasian Diabetes in Pregnancy Society; 2014.
  6. Jeffery T, Petersen RW, Quinlivan JA. Does cardiotocography have a role in the antenatal management of pregnancy complicated by gestational diabetes mellitus? ANZJOG 2016; DOI: 10.1111/ajo.12487.
  7. Landon MB, Mele L, Spong CY, Ramin SM, Casey B, Wapner RJ, et al. The relationship between maternal glycemia and perinatal outcome. Obstet Gynecol. 2011 Feb;117(2):218-24.
  8. HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991-2002.
  9. Graves CR. Antepartum fetal surveillance and timing of delivery in the pregnancy complicated by diabetes mellitus. Clin Obstet Gynecol. 2007;50(4): 1007-1013.
  10. Kjos SL, Leung A, Henry OA, Victor MR, Paul RH, Medearis AL. Antepartum surveillance in diabetic pregnancies: predictors of fetal distress in labor. Am J Obstet Gynecol. 1995 Nov;173(5):1532-1539.
  11. McDonnell S, Chandraharan E. The Pathophysiology of CTGs and Types of Intrapartum Hypoxia. Current Women’s Health Reviews. 2013;9(3): 158-68.
  12. McDonnell S, Chandraharan E. Fetal Heart Rate Interpretation in the Second Stage of Labour: Pearls and Pitfalls. Br J Med Med Res. 2015;7(12): 957-70.
  13. Devoe LD, Jones CR. Nonstress test: evidence-based use in high-risk pregnancy. Clin Obstet Gynecol. 2002 Dec;45(4):986-992.
  14. Metzger BE, Buchanan TA, Coustan DR, de Leiva A, Dunger DB, Hadden DR, et al. Summary and Recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus. Diabetes Care. 2007 Jul;30(S2) :S251-60.
  15. Landon MB, Vickers S. Fetal surveillance in pregnancy complicated by diabetes mellitus: is it necessary?. J Matern Fetal Neonatal Med. 2002 Dec; 12(6):413-416.
  16. Loomis L, Lee J, Tweed E, Fashner J. What is appropriate fetal surveillance for women with diet-controlled gestational diabetes?. J Fam Pract. 2006 Mar;55(3):238-240.

 

Causes and consequences of too many antibiotics in pregnancy

Slide10

Antibiotics in pregnancy

I was recently checking audited hospital files from one of my research trials and noticed the majority of  women had been prescribed an antibiotic in pregnancy. The commonest indication was for prophylaxis against wound infection in women about to have a caesarean section. The second commonest indication was to prevent neonatal group B streptococcal infection in women with vaginal colonisation.

However, many other women had been prescribed antibiotics for urinary tract, vaginal and respiratory infections.

Yet the audit demonstrated that many of the mid stream urine samples and vaginal swabs collected from these women were ultimately normal. The respiratory infections documented in the notes were almost universally viral, and not bacterial.

It seems antibiotics in pregnancy are being overprescribed.

Overprescription of antibiotics in pregnancy

No drug or medication should be taken in pregnancy unless benefit outweighs the risk of harm.

A course of antibiotics prescribed for a viral chest infection or for urinary symptoms when no infection is present, is not harmless. Many patients and obstetric clinical staff mistakenly think it is “safer” to use antibiotics when in doubt.

However, there is a risk of real harm from the overprescription of antibiotics – harm to the mother, baby, and wider community.

Harm to the mother

Every time antibiotics are prescribed, they kill bacteria. However, they kill both harmful and beneficial bacteria.

In pregnancy, the flora of vagina stabilises (1). This stabilisation is associated with improved outcomes in pregnancy.

The use of antibiotics disrupts normal vaginal flora. This is because beneficial bacteria die and this creates an opportunity for pathogenic bacteria to colonise and infect the vagina.  The presence of pathogenic vaginal bacteria in pregnancy has  been linked to many adverse outcomes including preterm birth and fetal death in utero (2,3,4,5).

Colonisation by pathogenic bacteria is not the only risk. Other micro-organisms, such as fungi, can colonise or infect the vagina following a course of antibiotics. One commonly observed complication is post antibiotic vaginal Candidal infection. This can cause symptoms of itch, soreness and vaginal discharge.

Harm to the baby

As a baby is born, it passes through the vagina and acquires microorganisms from the mother’s reproductive tract. When the mother’s vaginal flora is healthy and stabilised, the baby’s microflora in the gastrointestinal tract will also be healthy and stabilise.

However, pathogenic bacteria in the maternal genital tract can be directly transmitted to the baby, causing serious newborn infection.

Even relatively minor pathogens such as Candida can still cause postnatal problems.  Vaginal Candidal infection can result in neonatal oral Candidal infection, and Candidal infection of the maternal nipples. The end result can be breastfeeding and overall feeding difficulties.

Harm to the community

The biggest harm arising from the overprescription of antibiotics comes from the development of resistance.

The Clinical Senate of Western Australia recently hosted a policy debate to develop recommendations to prevent the development and transmission of “Superbugs”. These are bacteria that are resistant to many antibiotics (6).

The World Health Organisation’s 2014 report on global surveillance of antimicrobial resistance reported that antibiotic resistance is no longer a prediction for the future; it is a reality. This year, several bacteria have been identified that are resistant to every known antibiotic.

This is a ticking time bomb for humanity.

Without urgent, coordinated action, the world is heading towards a post-antibiotic era in which common infections and minor injuries, which have been treatable for decades, can once again kill.

Impact of infections and antibiotic resistance

According to the National Health and Medical Research Council (NMHRC) and Australian Commission on Safety and Quality in Healthcare (NSQHS), infection is the most common complication affecting hospital patients, affecting 200,000 patients per year (7). At least half of healthcare associated infections are preventable. Successful infection control to minimise the risk of transmission requires a range of strategies across all levels of the healthcare system and a collaborative approach for successful implementation.

Excess length of stay due to a surgical site infection is between 3.5 and 23 hospital bed days, depending on the type of infection. The total national number of bed days due to surgical site infections for a one year period was estimated to be 206,527 bed days (8). If there was optimal use of antimicrobials and containment of antimicrobial resistance, $300 million of the Australian national healthcare budget could be redirected to more effective use every year (9).

 

What are Superbugs?

Dr Paul Armstrong, Director, Communicable Diseases Control Directorate, Public Health Division, Department of Health WA recently defined Superbugs as being multi-resistant organisms (MROs), resistant to a number of antibiotics. MROs arose from natural selection, that is, evolutionary pressure that selected resistant organisms following exposure to antibiotics within human medicine, veterinary medicine and agriculture.

Dr Armstrong stated the pressure on bacteria to develop resistance occurred in both hospitals (especially large tertiary hospitals) where the sickest patients are cared for and where the need for powerful antibiotics is greatest, and in the community.

Antibiotic resistance organisms are, to some extent, a natural process. However, overuse and misuse of antibiotics accelerates the emergence of drug-resistant strains, so that a drug that was previously effective to treat a particular microorganism is rendered ineffective.

Cost of Superbugs

Dr Armstrong told the Clinical Senate of Western Australia that the USA Centers for Disease Control and Prevention (CDC) estimated that $20 billion in direct costs was associated with antimicrobial resistance each year.

There is a direct cost on the health system due to increased costs of antibiotics, special equipment, prolonged length of stay, increased staff time and tying up of resources.

Some bacteria now had no antibiotics effective against them.

Origins of Superbugs

There are three major sources of Superbugs.

The first is  environmental contamination with antibiotics. This is is a particular problem in developing countries that manufacture pharmaceuticals and where the use of antibiotics in agriculture is not adequately regulated. In some regions, environmental contamination is strong high, multi resistance organisms have been found in the water supply.

The second key driver is unnecessary prescribing of antibiotics. This is a severe problem in the developing world where people are able to access and purchase antibiotics over the counter. However, developed countries also carry some of the blame. It has been estimated that nearly ¾ of all antibiotics in clinical medicine in Australia may have been inappropriately prescribed. This overprescription arises jointly from pressure from patients who overestimate the benefits of antibiotics and also from clinicians who underestimate their harm.

Globalisation was is a third important factor in the emergence and spread of Superbugs. Food imported from countries with higher resistance levels create risk. International travel and medical tourism also drive risk.  Individuals who travel overseas to areas of high antibiotic environmental contamination return to Australia  with infections that are resistant to antibiotics.

What are the solutions to combat Superbugs?

The WA Clinical Senate came up with some solutions to slow the spread of Superbugs. If you are interested in reading the full report and recommendations click here.

However, the two principles are

(a) Prevent antimicrobial resistance from developing in the first place; and

(b) Determine how to manage MROs or Superbugs when they arise.

Strategies for prevention include

  • Good infection control practices;
  • Vaccines;
  • Thorough cleaning practices;
  • Good surveillance systems;
  • Guidelines on appropriate antibiotics use;
  • Screening programs for patients who have been hospitalised within Australia or abroad;
  • Agricultural controls and regulation;
  • Prescription regulation.

At the end of the day, it is  timely to recall the message of the World Health Organization

“Preserve the miracle of antibiotics – “No action today, no cure tomorrow”.

References

  1. Kaakoush NO, Mendz GL, Quinlivan JA. New techniques to characterize the vaginal microbiome in pregnancy. AIMS Microbiology 2016, 2(1);55-68.
  2. Mendz GL, Kaakoush NO, Quinlivan JA Bacterial aetiological agents of intra-amniotic infections and preterm birth in pregnant women. Frontiers in Cellular Infection and Microbiology. 2013, 3: 58. doi: 10.3389/fcimb.2013.00058
  3. Kaakoush N, Quinlivan J, Mendz G. Bacteroides and Hafnia Infections Associated With Chorioamnionitis and Preterm Birth. Journal of Clinical and Gynecological Obstetrics. 06/2014; 3(2):76-79.
  4. Quinlivan JA, Kaakoush NO, Mendz GL. Acinetobacter Species Associated with Spontaneous Preterm Birth and Histological Chorioamnionitis. British Journal of Medicine & Medical Research, 2014; 4(33): 5293-5297.
  5. Mendz GL, Petersen R, Quinlivan JA, Kaakoush NO. Potential involvement of Campylobacter curvus and Haemophilus parainfluenzae in preterm birth. BMJ Case Reports 2014: published online 1 October 2014, doi:10.1136/bcr-2014-205282.
  6. Quinlivan JA, Weeramanthri T, Geelhoed G. Superbugs Executive Summary and recommendations for action from the Clinical Senate of Western Australia. Health Department of Western Australia 2016 March debate.
  7. NHMRC. NHMRC Australian guidelines for the prevention and control of infection in healthcare. canberra NHMRC 2010; 260.
  8. Graves N, Halton K, Robertos L. Costs of health care associated infection. In: Cruickshank M, Fergusson J (ed) Reducing harm to patients from health care associated infection: The role of surveillance. Sydney Australia Commission on Safety and Quality in Health Care 2008, 307-335.
  9. Australia Commission on Safety and Quality in Health Care. Windows into safety and quality in healthcare 2009. Sydney Australia Commission on Safety and Quality in Health Care 2009.

 

 

What’s new about gestational diabetes?

IMG_0675.JPGGestational diabetes is a common medical complication of pregnancy (1-5). It is an important condition as failure to diagnose and treat gestational diabetes can lead to poor pregnancy outcomes, and in severe cases, fetal death in utero may occur. However, with accurate diagnosis and management, outcomes are excellent.

There have been some changes in the way gestational diabetes is diagnosed and managed.

1. The diagnosis of gestational diabetes has changed

The original diagnosis of gestational diabetes was developed nearly 50 years ago (3). In 2010 there was a recommendation by the International Diabetes and Pregnancy Study Groups that the diagnosis of gestational gestational diabetes should change (4,5). The recommendation arose from a study called HAPO (Hyperglycaemia and pregnancy outcomes)(5). The HAPO tidy correlated blood sugar levels in pregnancy with poor outcomes in mothers and babies and formulated new cut off values for blood sugar levels in pregnancy (4,5).

Six years later, not all countries and clinicians have adopted the new recommendations. However, our research suggests the new diagnostic criteria are associated with improved outcomes (6).

Gestational diabetes is diagnosed on a blood test performed between 24 and 30 weeks of pregnancy. The diagnostic test is called a glucose tolerance test and involves an overnight fast, followed by a fasting blood sugar test. Women then drink a measured amount of glucose syrup and 1 and 2 hours later have further blood sugar tests.

The new diagnostic criteria are (4):

fasting level greater than 5 mmol/l

1 hour sugar level greater than 10mmol/l

2 hour sugar level greater than or equal to 8.5mmol/l.

2. Importance of diet

The importance of diet in the management of gestational diabetes has never been clearer.

The majority of women who adopt a diabetic diet will require no additional treatment.

Many maternity units will refer women diagnosed with gestational diabetes to a dietician for advice on a diabetic diet. However, information is also widely available on the Internet, and in libraries and from diabetes associations.

Monitoring blood sugar levels in conjunction with diet is important as no two people respond to a food source in the same way.

As a clinician I have seen women eat the same meal and one will have a normal blood sugar level and the second an elevated level. Therefore it is important to monitor your sugar levels along with your diet to assess how your body responds to particular foods. This will help you identify safe foods and those you should avoid.

Blood sugar levels are monitored using a finger prick test. Machines to record the blood sugar level may be hired from chemists.

3. Medication for gestational diabetes

If medication is required (about 30% of women) then traditionally this would have been Insulin.

However, increasingly Metformin, an oral medication, is prescribed. There are good safety studies for Metformin.

Your specialist will advise whether Metformin, Insulin or a combination of the two is required.

4. Monitoring the pregnancy

Because gestational diabetes is associated with an increased risk of pregnancy complications, additional monitoring of the pregnancy is required. This is usually in the form of ultrasound examinations and fetal cardiotocograph tests (CTGs).

Ultrasound examinations are ordered to assess fetal growth and placental health. The pathology in gestational diabetes arises in the placenta. High blood sugar levels damage the delicate blood vessels in the placenta, causing sugar to flood across into the baby. The baby’s developing hormone system responds to the high sugar level by releasing growth factors. This causes abnormal growth of the baby which is detected on ultrasound as an increase in the abdominal circumference.

In more severe cases, the delicate placental blood vessels are so damaged that the placental circulation shuts down, and the baby ends up being starved of nutrients, and becomes growth restricted.

Medical staff will usually plot the developing baby’s growth on a chart to assess if the overall growth of the baby, and the relative growth of the head, abdomen and femur bones are in proportion.

The ultrasound examination will also inform medical staff about blood flow in the placenta and if growth is abnormal, will record the blood flow within the baby’s head. Blood flow readings are called doppler studies. The results of doppler studies can assist in guiding  delivery management.

Cardiotocograph tests may also be ordered to monitor the well being of the developing baby. We are currently finalising a study to investigate the optimal strategy to use CTGs in pregnancy complicated by gestational diabetes. However, our preliminary results suggest the tests should be reserved for pregnancies where medication is required in addition to diet, or where other complications have been noted.

5. Timing of delivery

There is no agreed gestation at which women with gestational diabetes should deliver. However, many people now believe that if the pregnancy has been managed with diet alone, and blood sugar levels have been controlled, and the baby’s growth is normal, then the pregnancy can progress to term and normal birth without the need for intervention. However, many centres still offer delivery at 40 weeks.

If the pregnancy is complicated because medication was required in addition to diet, or the baby’s growth was abnormal, or a CTG was abnormal, then earlier delivery is required.

6. Follow up after delivery

All women who were diagnosed with gestational diabetes should have a follow up assessment within six months of delivery. This should involve a repeat glucose tolerance test. In our clinic, we also screen for thyroid and cholesterol abnormalities. We have found women with gestational diabetes have an elevated risk of developing type 2 diabetes, thyroid and cholesterol problems (7).

Sadly, many women fail to receive postnatal follow up and a valuable opportunity to improve their long term health through early diagnosis of chronic disease is wasted.

In summary

Gestational diabetes is easy to diagnose and manage. Most women will only require dietary changes, monitoring of blood sugar levels and some additional investigations.

It is important to screen and treat as otherwise pregnancy complications can harm mother and baby.

References

1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care 2009; 32(S1): S62-S67.

2. Metzger BE, Coustan DR: The organizing committee. Summary and recommendations of the Fourth International Workshop-Conference on Gestational Diabetes Mellitus. Diabetes care 1998; 21(S2): B161-B167.

3. O’Sullivan JB, Mahan CM. Criteria for oral glucose tolerance test in pregnancy. Diabetes 1964;13: 278-285.

4. International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in pregnancy. Diabetes Care 2010; 33: 676-682.

5. Metzger BE, Lowe LP, Dyer AR et al. The HAPO Study Cooperative Research Group. Hyperglycemia and Adverse pregnancy outcomes. N Engl J Med 2008; 358: 1991-2002.
6. Silbartie P, Quinlivan JA. Implementation of the International Association of Diabetes and Pregnancy Study Groups Criteria: Not Always a Cause for Concern. Journal of pregnancy 12/2015; 2015(2):1-5. DOI: 10.1155/2015/754085

7. Quinlivan JA, Lam D. Cholesterol abnormalities are common in women with prior gestational diabetes. J Diabetes Metab 2013; 4(4): 255. doi: 10.4172/2155-6156.10000255.

Are your women’s health records secure?

IMG_0201

A recent scandal making headlines in Australia involved unauthorised access of a healthcare record by 13 clinical staff. Worse, the issue of unauthorised access only came to media attention because the individual whose privacy was breached was a central figure in a murder trial linked to Australia’s favourite sporting past-time. The AFL.

How private are your electronic health records?

Not as private as you might like them to be!

Apart from the risk of healthcare staff gaining unauthorised access, there is the bigger risk of hackers. Several hospitals have now faced payouts as a result of privacy and data security breaches of patient records (1). One US FBI investigation into the hacking of a computer system at a medical facility found that “the system had been hacked into by 11 other groups before the breach under investigation had been identified” (1).

How concerned are patients about privacy?

Some US patients are sufficiently concerned over loss of privacy they have transferred their healthcare contracts to companies that do not use electronic health records (2). Data from a New Zealand consumer patient survey reported high levels of concern about hackers (79.4%), vendor access (72.7%) and malicious software (68%) (3).

Our own Australian research found pregnant women shared these concerns (4). We conducted a survey study of 528 pregnant women asking about their preferences in medical record systems. Despite the surveyed women having high levels of familiarity with computers, and using them on an almost daily basis, nearly half preferred a hospital held paper-based system. Only a third ranked electronic records first (4).

One key finding in our research was that pregnant women had concerns over loss of privacy with an electronic health record compared to a paper-based hospital system.

One woman stated:

“You hear about people breaking into computers and stealing information. You know, like Wikileaks, only they just want to cause trouble. I’m not sure I want all my medical information out there to be discovered. Who reads it? I also don’t want my husband or kids seeing things either and if its (sic) there they might want to see. I’m not convinced it would be safe.”

How concerned are patients about loss of control?

Our research also found patients were concerned about a loss of control of their record (4).

One woman stated:

“They say that only you can see it, but in a few years that will change. All those politicians will want to ransack our records for things and you won’t get a say in how they use them. Once somethings (sic) on-line you’ve lost control.”

One way that loss of control might occur is through data entry errors. This could happen if information from one source is merged with another without the “safety check” of consumer involvement.

Instances of inaccurate data ending up in patient’s records were identified in an evaluation of the English Summary Care Record (5). Patients were found to have drugs listed that they were not prescribed and in other cases medications they used were omitted from the record (5).

Some positive aspects to electronic health records

Our research did identify some strong positive findings in favour of electronic health records (4). Pregnant women found then to be less likely to be lost, and they felt they were the “way of the future”.

One woman wrote:

“Everything is on line now. I find a lot of it easier, like banking. Why should medical records be different?”

And another said:

“By the time my kids are my age paper will old fashioned. In school now they don’t use paper. Why should hospitals be different?” 

Electronic healthcare records are inevitable

The move to fully integrated electronic healthcare records is inevitable.

Governments around the world are spending billions (literally) on electronic health record systems. By example, in 2012 the Australian government spent $766 million for a new personally controlled e-health record (PCEHR) system (6,7).

Electronic health records should improve access to patient information by bringing together information from multiple sources into a single record. There are real benefits to bringing together pathology, radiology and clinical notes from community, private and public healthcare services into one site. Research studies have documented benefits in greater adherence to guideline-based care, enhanced surveillance and monitoring and fewer medication errors (8,9,10).

The key to electronic healthcare records will be to ensure patients do not lose their privacy and retain control of their records.

In women’s health, where sensitive issues such as domestic violence, sexual assault, and sexually transmitted infections are common, the right to privacy and control remain critical.

References

  1. Gupta A. Hackers, Breaches and other threats to electronic records. Health Data Management 2011; 19: 54-55.
  2. Chanabhai P, Holt A. Consumers are ready to accept the transition to online and electronic records if they can be assured of the security measures. Med Gen Med 2007; 9(1): 8
  3. Gaylin DS, Moiduddin A, Mohamoud S, Lundeen K, Kelly JA. Public attitudes about health information technology, and its relationship to health care quality, costs and privacy. Health Services Research 2011; 46(3): 920-938.
  4. Quinlivan JA, Lyons S, Petersen RW. Attitudes of pregnant women towards personally controlled electronic (PCEHR), hospital held and patient held medical record systems: a survey study. Telemedicine journal and e-health : the official journal of the American Telemedicine Association. 07/2014. DOI: 10.1089/tmj.2013.0342
  5. Greenhalgh T, Stramer K, Bratan T, Byrne E, Russell J, Potts HW. Adoption and non-adoption of a shared electronic summary record in England: a mixed-method case study. BMJ 2010;340:c3111.
  6. Avery B. Opinion: Why national e-health is not for everyone. Authoritative. Strategic, IDG Communication, published 13 May 2013. Accessed on 21 July 2013 at http://www.cio.com.au/article/461628/opinion_why_national_e-health_everyone,
  7. Haikerwal M. PCEHR set to make life easier for doctors, improve care. Australian Medicine, Australian Medical Association, published 4 May 2013. Accessed on 21 July 2013 at https://ama.com.au/ausmed/pcehr-set-make-life-easier-doctors-improve-care
  8. Sheikh A, Cornford T, Barber N, Avery A, Takian A, Lichtner V et al. Implementation and adoption of nationwide electronic health records in secondary care in England: final qualitative results from prospective national evaluation in ‘early adopter’ hospitals. BMJ 2011; 343: d6054 doi:10.1136/bmj.d6054
  9. Jha AK. The promise of electronic health records. JAMA 2011; 306(8): 880-881
  10. Chaudhry B, Wang J, Wu S, Maglione M, Mojica W, Roth E et al. Systematic review: Impact of health information technology on quality, efficiency, and costs of medical care. Annals of Internal Medicine 2006; 144: 742-752.